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We aim to generate high resolution shallow depth-of-field (DoF) images from
a single all-in-focus image with controllable focal distance and aperture size.
To achieve this, we propose a novel neural network model comprised of
a depth prediction module, a lens blur module, and a guided upsampling
module. All modules are differentiable and are learned from data. To train
our depth prediction module, we collect a dataset of 2462 RGB-D images
captured by mobile phones with a dual-lens camera, and use existing segmen-
tation datasets to improve border prediction. We further leverage a synthetic
dataset with known depth to supervise the lens blur and guided upsampling
modules. The effectiveness of our system and training strategies are verified
in the experiments. Our method can generate high-quality shallow DoF
images at high resolution, and produces significantly fewer artifacts than
the baselines and existing solutions for single image shallow DoF synthesis.
Compared with the iPhone portrait mode, which is a state-of-the-art shallow
DoF solution based on a dual-lens depth camera, our method generates
comparable results, while allowing for greater flexibility to choose focal
points and aperture size, and is not limited to one capture setup.
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1 INTRODUCTION

The shallow depth-of-field (DoF) effect is an important technique
in photography which draws the viewers’ attention to the region of
focus by blurring out the rest of the image. Typically, these images
are captured with expensive, single-lens reflex (SLR) cameras and
large-aperture lenses. This makes their acquisition less accessible
to casual photographers. In addition, once captured, these images
can not be easily edited to refocus onto other regions, or to change
the amount of defocus.

In this work, we propose to train a neural network system which
generates synthetic shallow DoF effects on all-in-focus photos cap-
tured by ordinary cameras or mobile devices. Our network is com-
posed of a depth prediction module for single image depth estima-
tion, a lens blur module for predicting spatially-varying blur kernels,
and a guided upsampling module for generating high-resolution
shallow DoF images.

The whole network is fully differentiable and therefore allows end-
to-end training. However, the required training data (all-in-focus
and shallow DoF image pairs) are hard to capture for diverse scenes
with non-static content. One potential solution for data collection
is to generate ground truth shallow DoF images of real scenes with
existing rendering methods that leverage depth maps. However, as
image-based methods suffer from various artifacts (c.f Fig. 3), the
rendered ground truth contains artifacts. An alternative solution
is to adopt artifact-free synthetic data, but then the challenge is to
generalize this data to real world images. Based on these discussions,
we propose to train the network in a piece-wise manner. Specifi-
cally, since depth prediction requires semantic understanding of the
scene, we train the depth prediction module on real images to allow
for generalization. In comparison, rendering DoF effects based on
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the predicted depth mainly involves low-level operations which
are consistent across real and synthetic data. To alleviate artifacts,
the lens blur and guided upsampling modules are therefore jointly
trained on high-quality synthetic images.

To train our depth prediction module, we collect a new dataset
consisting of 2462 RGB-D images of diverse content from real-world
environments. The RGB-D images are acquired by the dual-lens
camera on an iPhone. Compared with existing RGB-D datasets
[Geiger et al. 2012; Silberman et al. 2012; Srinivasan et al. 2017],
our proposed dataset contains more diverse contents and is more
focused on everyday scenes and common photography subjects.
We further leverage existing salient object datasets [Cheng et al.
2015; Wang et al. 2017] to augment the depth training with an
auxiliary foreground segmentation task, which improves the quality
at object boundaries, and makes the depth prediction module better
generalize to diverse content and image types.

The lens blur module together with the guided upsampling mod-
ule generates high resolution shallow DoF images based on predicted
depth maps. To jointly train the two modules, we introduce a syn-
thetic dataset consisting of scenes with known depth and occlusion
information, which can be used to render shallow DoF supervision
without artifacts. We further randomly distort the known depth dur-
ing training to make our lens blur module and guided upsampling
module robust to inaccurate depth maps. After training, the guided
upsampling module can be recurrently applied on the output of the
lens blur module to generate high-resolution results of arbitrary
resolutions (we show results up to 2k in this paper).

We conduct user studies to show that our results significantly
outperform existing single image-based solutions, and are compa-
rable to DoF images rendered by the iPhone portrait mode, which
requires depth inputs from a dual-lens camera. Our method can be
used with any camera, and allows users to control the focal point
and blur amount at interactive rates (e.g., 0.7s for 2048 resolution).
We further show that our method can be applied in more general
scenarios such as historic photos and even paintings.

In summary, we present the following contributions:

(1) A learning-based DoF rendering method that can be trained
to produce fewer artifacts than existing hand-designed lens
blur methods, while being more robust to inaccurate depth
maps. This is trained with a loss designed to concentrate the
training on depth discontinuity boundaries.

(2) A memory-efficient network architecture that performs the

lens blur operation in a compressed feature space and recur-

rently applies guided upsampling to generate results at high
resolution.

A carefully-designed training scheme using a combination of

real and synthetic data for the general single image shallow

DoF synthesis.

—
W
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2 RELATED WORK

Depth reconstruction is a classic problem in computer vision with a
large body of literature. Here, we review learning-based single image
depth estimation methods, as well as related works that address
depth in the context of lens blur effects. We will also cover related
works in lens blur rendering and defocus estimation.
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Single Image Depth Estimation. CNNs have proven to be powerful
tools to learn strong scene priors for single image depth predic-
tion, usually by training to reconstruct the output of depth cam-
eras [Eigen et al. 2014; Laina et al. 2016; Liu et al. 2015]. How-
ever, depth cameras often have limitations in terms of range, image
quality, portability, and resolution. As a result, models trained on
raw depth data often only work in limited scenarios (e.g., indoor
rooms [Silberman et al. 2012], street scenes [Geiger et al. 2012],
landmarks [Li and Snavely 2018]). In [Srinivasan et al. 2018], aper-
ture stacks are used as supervision for depth prediction, which
demonstrates its effectiveness on flower images and indoor scenes.
However, only using aperture supervision can suffer from depth
ambiguities, especially with diverse scenes, and we found in our
experiments that we were not able to generate high quality results
by using aperture supervision alone .

Multi-Images Depth Estimation. Using correspondences across
multiple images is the most common way to acquire depth informa-
tion, and several methods have used this in the context of shallow
DoF effects. For example, depth can be created from focal stacks on
mobile phones [Suwajanakorn et al. 2015], stereo camera pairs [Bar-
ron et al. 2015], small baseline burst image capture [Ha et al. 2016;
Joshi and Zitnick 2014], or multiple frames of video [Klose et al.
2015]. These methods all perform a two stage process, where the
pre-computed depth and an in-focus image is used to synthesize
shallow DoF results. As opposed to this, we compute depth from
a single image, and introduce a differential shallow DoF renderer,
which is trained to be robust to errors in estimated depth.

Lens Blur Effects. Lens blur effects that operate on a single RGB-D
image cannot generate an exact result, as defocus blur requires see-
ing behind objects. Existing methods that approximate the lens blur
can be generally classified into object space and image space. Object
space methods [Haeberli and Akeley 1990; Lee et al. 2010] explore
ray tracing and real camera models, and are more effective in ren-
dering realistic shallow DoF images, but most of these methods are
time-consuming and entail 3D scene representation which is hard to
achieve. Image space methods [Kraus and Strengert 2007; Lee et al.
2009; Yang et al. 2016] operate on a single image, and cast shallow
DoF effects rendering as a post-processing step with gathering and
spreading operations. These methods are more efficient and can be
converted to a fixed but differentiable layer, as has been done in the
compositional aperture rendering [Srinivasan et al. 2018]. However,
this approach uses fixed convolutional kernels (discs) at discrete
depths and blends them to generate a final image. This can lead to
results that suffer from intensity leakage at depth discontinuities,
and cannot handle foreground occluders in the defocused regions
well. As opposed to these methods, our approach uses a lens blur
module that is motivated by real lens optics, and can produce effects
such as an out-of-focus foreground, which is more challenging to
generate.

Current high end mobile phones, such as the iPhone and Google
Pixel 2, have a “portrait mode” application, which simulates shal-
low DoF images. These are based off of depth measurements from
multiple views or dual-pixels, or from a simpler foreground seg-
mentation mask. Moreover, users are unable to control the focal
point or the blur amount in the current portrait mode application.
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Fig. 2. Method Overview. At a high level (top), we predict a low resolution depth map D from the all-in-focus input A. D, A, and the focus parameters are
used to generate a low resolution shallow DoF image L, which is then upsampled into a final high resolution output H. In more detail (bottom), the depth
prediction module takes Aand jointly predicts depth D and segmentation S maps, both of which have supervision. The lens blur module computes spatially
varying kernels K which are applied to a reduced dimension feature map F to produce L. The guided upsampling module recurrently super-resolves the
DoF image by a factor of X2 until it reaches the original resolution. Red blocks indicate supervision, blue blocks are learnable modules, and green blocks are
intermediate feature maps. See the supplementary materials for more details of the network architecture. Photo credits: grassrootsgroundswell.

In contrast, our method allows users to modify the shallow DoF
parameters interactively, and can generate results with comparable
quality without a dedicated hardware depth module.

3 METHOD

While it is possible to cast the shallow DoF rendering problem as a
black-box input-to-output regression problem [Isola et al. 2017], we
found this approach did not generate satisfactory results. Instead,
we propose an approach motivated by physical models that con-
sists of three modules: depth prediction, lens blur, and guided
upsampling. Fig. 2 shows an overview of our approach. We now de-
scribe each step in the model, but please refer to the supplementary
materials for detailed network architectures.

3.1 Depth Prediction

We use a fully convolutional network architecture for depth predic-
tion, trained on our newly collected RGB-D dataset (see Section 4.1).
To further increase the generalization ability of our model across
different image types, we augment the training with an additional
foreground segmentation task, using [Cheng et al. 2015; Wang et al.
2017] The auxiliary segmentation task also enforces more accurate
object boundary delineation in depth prediction, which is essential
to shallow DoF rendering.

The depth prediction module is shown in Fig. 2. It consists of an
encoder and a decoder followed by multi-task heads. The encoder
extracts features using the first 14 residual blocks (from Conv1 to
Res4f) of the ResNet-50 [He et al. 2016] network pretrained on
ImageNet [Deng et al. 2009], with atrous convolution layers on the

last block to preserve feature resolution. It is then followed by a
four-level pyramid pooling layer [Zhao et al. 2017] with bin sizes of
1x1,2X2,4x4 and 8 8, respectively. The decoder then upsamples
the feature maps with three X2 bilinear upsampling layers, with
skip connections from the encoder at each level. At the end of the
decoder, the network is split into two small multi-task heads, each
consisting of three convolutional layers. These heads generate depth
prediction and foreground segmentation respectively.

Shallow DoF rendering only relies on depth ordinal information,
making the reconstruction of the absolute depth values unnecessary.
We therefore invert the depth to compute the disparity which is
further normalized to the range of [0, 1] by the minimum and maxi-
mum values. Both the ground truth and the network prediction are
normalized in the same manner. We use "depth prediction" to refer
to the generation of these normalized inverted depth maps in the
rest of the text.

The network is then trained in a multi-task manner using the
following loss function:

Ja0a) = ID = DI|ly +y x |IS = $]Ix, 1)

where D and S denote the predicted depth map and foreground
segmentation map, respectively; DI and S9 are the corresponding
ground truth; y represents a trade-off parameter to balance the two
tasks. We note that DY and SY come from different datasets, and
each mini-batch during training contains images from both datasets.
During the test phase, we only maintain the depth prediction stream,
while the foreground segmentation stream is discarded.
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Fig. 3. Comparison of lens blur methods. Our approach produces a more
accurate focus/defocus boundary, while the compositional approach, and
the ray tracing method of Yang et al. [2016] over-blurs high contrast regions.
Photo credits: mrchrishill and Kris Arnold.

3.2 Lens Blur Rendering

Given the predicted depth map along with the original image, exist-
ing image space or object space rendering methods could be utilized
to approximate lens blur effects [Lee et al. 2010; Srinivasan et al.
2018; Yang et al. 2016]. However, these methods often produce arti-
facts around object boundaries. Therefore, to obtain higher quality
results, we use a differentiable neural network to approximate the
spatially varying lens blur kernel, and train this network on a new
artifact-free synthetic dataset (see Section 4.2). We compare the
results of our lens blur approach with the ones generated by other
lens blur rendering methods in Fig. 3, where all methods are given
the same input image and depth map. We can see that our learned
lens blur module produces more accurate results with much fewer
artifacts.

One challenge with this approach is that it is prohibitive to di-
rectly predict and apply the learned spatially varying lens blur
kernel on a large image due to memory consumption. Consider an
input image of H X W resolution and a maximum blur kernel size of
k x k. This would require computing an H x W x k? kernel tensor.
Applying a spatially varying filter with a kernel size k = 65 on a
12801280 3-channel image would require 12802 x 652 X 4 = 25.79
GB memory, and 19.34 GFLOPS at inference time! . To reduce mem-
ory and computation, we operate on a lower resolution image (h X w
where h < H and w < W) and rely on the subsequent recurrent
guided upsampling module to generate high-resolution results. Fur-
thermore, the lens blur module operates as 1 X 1 filters in a learned
feature space with ¢ << k? dimensions, instead of directly applying
blur in the image space. As a consequence, we only have to predict
a kernel tensor of h X w X c.

3.2.1 Lens Blur in Learned Feature Space. The lens blur module
is comprised of a feature extraction network and a kernel prediction
network. The feature extraction network takes as input the low
resolution all-in-focus RGB image of size h X w and produces a

!Filtering the image with spatially varying kernels amounts to an element-wise mul-
tiplication between the kernel and the image tensor. Since both tensors are of size
1280x1280% 65 X3, the total computational complexity is 1280X1280x652X3 = 19.34
GFLOPS.
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feature map of size h X w X c. It consists of four convolution layers
interleaved by ReLU units. To capture multi-scale features, the final
feature maps are obtained by concatenating all intermediate feature
maps, which mainly encodes low-level features around each local
image patch (e.g., color, blur, texture, etc).

Given the depth map, focal depth and aperture radius, the kernel
prediction network is used to infer 1 X 1 blur kernels for each
image location by generating a h X w X ¢ kernel tensor, which
is then applied to the extracted feature map of each color channel
to render a shallow DoF effect. Formally, given the extracted feature
F; € RI*WX¢ for color channel i € {R, G, B}, and the predicted
kernel tensor K € R"*"X¢ | the shallow DoF image is rendered by:

[4
Li(x,y) = ) K(x,y, ) X Fi(x, 4, )), )
j=1

where L;(x,y) denotes the color value at location (x, y) of the ren-
dered DoF image. Since the kernel prediction and feature extraction
networks are jointly trained with shallow DoF supervision, they
learn in a data-driven fashion to generate desired kernels and feature
space, leading to high quality shallow DoF results.

As the predicted depth itself may not be accurate, relying only on
the depth to infer blur kernels increases the risk of producing un-
pleasant artifacts. Therefore, the final kernel prediction network also
takes the all-in-focus image as input, which allows it to correct for
errors in the predicted depth map based on the image context. This
results in more robust inference. Please refer to the supplementary
material for more network architecture details.

3.2.2  Control Parameters for Focal Depth and Aperture Size. The
lens blur network requires both the focal depth and aperture radius
to generate an output image. We encode focal depth with a signed
depth map D by subtracting the focal depth from the predicted
normalized depth map: D=D- dy, where dy denotes the focal
depth (0 implies that depth is in focus).

In order to encode the aperture size into the network input, one
could simply tile the desired aperture size and concatenate it with
the signed depth map. However, we found that this approach led
to unsatisfactory results, as it was difficult for the network to learn
the correlation between the blur amount and the value of aperture
radius. We instead propose a simpler and more effective alternative
moviated by the physics of DoF, where the network takes the signed
depth map as input, and is trained to produce shallow DoF images
for the largest aperture radius handled by our method, r™. To suc-
cessfully do this, the network must learn to add different amounts
of blur based on the distance to the focal plane. At test time, we
then allow the user to control the blur amount by scaling the input
depth map with the ratio a = r’—,;, where r* < r™ denotes the target
aperture radius. We find that this method leads to much more robust
training and allows for continuous aperture radius control at test
time.

3.2.3  Shallow DoF Upsampling. One could employ an out-of-
the-box super-resolution method to increase output resolution, but
in our case we have additional information in the original high res-
olution all-in-focus image. Most existing super-resolution methods
do not assume this additional information and therefore cannot
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Fig. 4. Comparison of different upsampling methods. Ours preserves details
in the in-focus region without introducing artifacts. Photo credit: Tambako
The Jaguar.

easily restore the clear in-focus regions. Another possible solution
would be to use a joint guided upsampling approach [He et al. 2010]
with the high-resolution all-in-focus image as guidance. However,
as this method is not specifically designed for our task, it results
in a sub-optimal solution, oversmoothing the in-focus region, and
creating artifacts in the defocused region where the guidance image
has strong texture (Fig. 4).

A key observation is that we should upsample the in-focus re-
gions by leveraging the all-in-focus guidance image, while the blurry
defocused regions should instead rely more on the low-resolution
shallow DoF image. Motivated by this, we propose a guided up-
sampling network, which extracts features separately from the low-
resolution space (i.e., the low-resolution input image, the predicted
DoF image and the depth map) and the high-resolution space (i.e.
the high-resolution all-in-focus image). The low-resolution features
are upsampled to the same resolution of the high-resolution ones
using bilinear upsampling. The network then predicts two high-
resolution spatial weight maps M4 and My, from the concatenation
of high and low-resolution features. The final high-resolution shal-
low DoF image H is achieved through a weighted combination of
the high-resolution all-in-focus image and the upsampled shallow
DoF image:

H=M,0A+M; 0L, 3)

where © denotes element-wise multiplication, A denotes the high-
resolution all-in-focus image, and L represents the shallow DoF
image upsampled from the low-resolution version L (Equation (2))
using bilinear interpolation. As shown in Fig. 4, our guided upsam-
pling module can render more pleasant results than single image
super resolution and guided filtering.

3.24  Joint Training. Since both lens blur and guided upsampling
modules are fully differentiable, we jointly train the two parts by
minimizing the differences between the produced low and high-
resolution results and the corresponding ground truth. However,
for rendering the shallow DoF images, the most challenging parts
of the scene are at object boundaries with depth discontinuities.
These regions only constitute a small portion of the whole image
but significantly contribute to the perceived quality. Traditional
¢1 and {3 losses are unable to capture these challenging regions,
leading to severe artifacts around object boundaries, as shown in
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Fig. 5. Comparison of different loss functions. Our normalized loss reduces
the artifact on the focus/defocus boundary, as well as in high contrast
regions in the background. Photo credit: Herry Lawford

Fig. 5. Therefore, we propose to use the following normalized loss:
2 wil(Xi, Vi)
i Wi '
where X and Y denote prediction and ground truth, respectively;
i indicates spatial index; L represents some pixel-wise loss; and
0 denotes network parameters to be optimized. The loss weight
w; for location i is computed as the local error (|X; — Y;|)*. The
hyper-parameter « is empirically set to 1.5 and works well. In our
experiments, we adopt the absolute difference as the pixel-wise loss
L. By substituting L and w;, Equation (4) can be written as
i IXi = vi|*H!
XilXi - vi|e

Unlike a standard ¢}, loss, this normalization places more emphasis
on pixels with large errors, i.e., hard examples, and ignores easy
cases (Fig. 5).

Both the lens blur and guided upsampling modules are then jointly
trained using the normalized loss as follows:

arg 5nin Jr(LIOp) + B % Jr(H|Op), (6)
1,6n

Jr(X10) = 4

Jp(X10) = ®)

where the low-resolution prediction L and its high-resolution coun-
terpart H are computed using Equation (2) and (3), §; and 6}, denote
network parameters of lens blur and guided upsampling module, re-
spectively. The loss is optimized by stochastic gradient solver. More
implementation details about network training and architecture can
be found in the supplementary material.

4 DATASETS

In order to train the proposed method, we require training sam-
ples consisting of an all-in-focus and shallow DoF image pair, the
corresponding focal depth, aperture size, and ground truth depth
map. As collecting data with all of these characteristics is challeng-
ing, we combine different sources of data to supervise the different
components of our method.

4.1 iPhone Depth Dataset

Existing depth prediction and shallow DoF datasets are very limited
in terms of scene diversity (e.g., indoor rooms [Silberman et al. 2012],
street scenes [Geiger et al. 2012], and flower images [Srinivasan et al.
2017]), which are not suitable for DoF effect synthesis in general

ACM Trans. Graph., Vol. 37, No. 6, Article 245. Publication date: November 2018.
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scenes. To facilitate network training, we collect a new data set of
RGB-D images using the dual-lens camera that comes with recent
iPhones. We developed a custom iOS app that saves the images
and depth maps from the iPhone camera, and deployed it to 15
users who helped capture a wide variety of scenes in different cities.
After manually filtering out inaccurate depth samples, we finally
obtain 2462 RGB-D images, (depth maps are computed at a lower
768x1024 resolution). The dataset is randomly split into a training
set with 2262 images and a test set with 200 images. A manual check
is performed to guarantee that there is no near-duplicate samples
between the training and test sets. Fig. 7 shows two examples of the
test images and depth maps.

Given the input RGB images and depth maps, we could render
approximate shallow DoF images for supervision using a ray-tracing
based rendering method [Yang et al. 2016]. However the rendered
DoF images are not artifact-free, due to i) the noise in the captured
depth maps, and ii) the depth discontinuity artifacts caused by the
missing appearance information of the occluded background that
is needed for the exact rendering. Consequently, we found that
training our rendering modules on this dataset led to sub-optimal
results. Thus, we resort to a synthetic dataset for training our lens
blur module and guided upsampling module.

4.2 Synthetic Shallow DoF Image Data Set

In order to achieve artifact-free training data, we introduce a cost-
effective synthetic shallow DoF dataset consisting of both all-in-
focus images and depth maps where we can ensure that i) the depth
maps are accurate ii) the appearance information of occluded regions
is available, and iii) the focal plane is known.

To this end, we select 300 training images from our iPhone depth
data set, which do not contain any foreground objects and serve as
the background images. For foreground objects, we augment the
matting data set from [Xu et al. 2017] with additional manually an-
notated data, which in total consists of 3662 foreground images and
the corresponding binary masks. To synthesize an all-in-focus im-
age, we randomly select one background image and two foreground
objects, and composite them together, forming three depth planes.
The background depth are either all zero or smoothly vary from b to
by either horizontally or from bottom to top, where by > by € [0, 1].
The depth within two foreground planes are homogeneous with
values fy > f1, where fy and fi denote the depth values of objects
within the front and middle planes, respectively, and are randomly
selected from the range of [0, 1], Given the synthesized image, depth
map, and a random focal depth, we then render shallow DoF effects
using the method [Yang et al. 2016] separately on the three image
planes and composite them together from back to front to generate
the final shallow DoF image. Since the depth values within each
foreground region are assumed to be homogeneous, depth discon-
tinuities only occur at object boundaries. This compositing based
approach effectively avoids discontinuity artifacts that arise from
image-based shallow DoF rendering approximations, as content
behind the foreground occluders is known, and can be correctly
modeled by ray tracing rather than hallucinated.

According to the above rules, we have synthesized 18K training
samples and 500 test ones. Fig. 6 shows two examples of the synthetic
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Depth

Fig. 6. Examples from the synthetic dataset.

data. While this data does not look realistic, we find that the lens blur
and guided upsampling module trained on the synthetic data can
generalize well to real images. This is because rendering shallow DoF
effects mainly involves low-level image operations, so the high level
scene context is less important. We also find randomly corrupting
the foreground depth plane through dilation or erosion to be an
effective data-augmentation strategy during training. As shown in
our experiments, training on corrupted depth can further improve
the robustness against inaccurate depth prediction and forces the
lens blur network to make prediction also based on input images
rather than depth only.

Besides using corrupted depth, we have also explored training
with depth maps generated by our depth prediction module. How-
ever, since our depth prediction module is trained on real images, it
fails to generalize well to synthetic scenes. As a consequence, we
train an additional depth prediction module on the synthetic data set.
We then use the synthetic predicted depth as input to train the lens
blur and guided upsampling. Our experiments (Section 5.3) show
that training with predicted depth achieves similar performance to
training with corrupted depth.

5 EXPERIMENTS
5.1 Depth Prediction

We first evaluate the performance of our depth prediction module.
We compare our approach with two state-of-art methods including
[Laina et al. 2016] and MegaDepth[Li and Snavely 2018], which are
trained to predict absolute depth values on the NYU v2 data set [Sil-
berman et al. 2012] and the MegaDepth data set [Li and Snavely
2018], respectively. In addition, we also implement a baseline method
named Aperture, which has the same network architecture as ours
and is trained with supervision only on DoF images, similar to the
method in [Srinivasan et al. 2018]. For a fairer comparison, we follow
[Srinivasan et al. 2018] and fit a 5-knot linear spline to minimize
the squared error of each prediction with respect to the ground
truth. This is needed to correct for scale differences. Especially for
aperture supervision, which can produce an inverted depth map.
Fig. 7 and 8 illustrate qualitative comparisons on the iPhone test
set and random internet images, respectively. It can be observed that
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Aper?ure MegaDepth [2018]

Fig. 7. Predicted depth on iPhone test set.

[Laina et al. 2016]

7 VAperture

w

MegaDepth [2018]

Fig. 8. Predicted depth of images from internet. Photo credits: Ashley Buttle and Torsten Behrens

Table 1. Comparison of depth prediction methods on our iPhone depth
test set in terms of mean absolute error (MAE). Results in parentheses are
achieved after training the corresponding methods on our iPhone depth
training set, and the Aperture model is trained end-to-end using shallow
DoF supervision.

Method [Laina et al. 2016] MegaDepth [2018] Aperture Ours

MAE 0.199 (0.138) 0.182 (0.142) 0.146  0.116

the models trained on existing depth datasets struggle to generalize
to both our test set and internet images, while our method trained
on the proposed depth data set achieves perceptually more accurate
results across the test images. Compared with the Aperture baseline,
which is our model trained end-to-end with supervision on shallow
DoF images, we observe that our method more clearly delineates
object boundaries.

A comparison of results are reported in terms of mean absolute
error (MAE) in Tab. 1. We report the performance of [Laina et al.
2016] and MegaDepth [Li and Snavely 2018] trained on their pro-
posed datasets and tested on our iPhone dataset, as well as trained
on our same training set.

5.2 Evaluation on DoF results

To evaluate the quality of our generated shallow DoF results, we
compare to a strong baseline consisting of a state-of-the-art sin-
gle image depth prediction method, MegaDepth [Li and Snavely
2018], and an approximate ray tracing based shallow DoF effect
method from [Yang et al. 2016]. For a fair comparison, we use the
model of MegaDepth trained on our iPhone depth data set. We
also compare to direct DoF image regression (without explicitly
inferring the depth map), using a state-of-the-art image-to-image
translation method [Isola et al. 2017], which has previously shown

ACM Trans. Graph., Vol. 37, No. 6, Article 245. Publication date: November 2018.
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Fig. 9. Qualitative comparison of shallow DoF results on images from internet (Cropped). First row: input image; second row: results of direct regression; third
row: results of Aperture; fourth row: results by MegaDepth [2018]+[Yang et al. 2016]; last row: our results. Please zoom-in to see details. Photo credits: Erin

Page, daveynin, mrchrishill and Jewish Women’s Archive.

successful in blur magnification to generate shallow DoF images.
To train the image-to-image translation model, we feed the focal
point, desired aperture size and the source image to the network,
and ask the network to predict the resulting shallow DoF image.
In addition, we have also compared to the Aperture baseline (See
Section 5.1), which combines our depth prediction network with a
differentiable compositional DoF rendering approach [Srinivasan
et al. 2018], and is trained in an end-to-end manner with DoF su-
pervision. We quantitatively evaluate all compared methods on the
iPhone test set, with ground truth rendered by [Yang et al. 2016]
based on ground truth iPhone depth maps. The comparison in terms
of PSNR and SSIM are shown in Tab. 2, and qualitative results on
internet images are illustrated in Fig. 9. Our method has achieved su-
perior performance against the other baselines, both quantitatively
and qualitatively. This is in part due to the multi-task training on a

ACM Trans. Graph., Vol. 37, No. 6, Article 245. Publication date: November 2018.

segmentation task, and our new iPhone Depth data set with more
diverse scenarios. The direct regression method often fails to render
shallow DoF effects and suffers from severe artifacts, while results
generated by Aperture and the combination of two state-of-the-art
prior works are more perceptually plausible, but have artifacts in
the predicted depth discontinuities, which affect the shallow DoF
rendering. Note that the quantitative evaluation on iPhone test set
would be inevitably affected by the artifacts in the rendered ground
truth as mentioned in Section 4.1. Therefore, we complement the
evaluation with a user study on internet photos (Section 5.4).

5.3 Ablative Study

To understand the contribution of each module, we compare our
final method to another two baselines. In the first baseline, we
replace the depth prediction network with the Aperture method
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Input Aperture + Our Lens Blur

Our Depth + [Yang et al. 2016] Ours

Fig. 10. Qualitative comparison of shallow DoF results (Cropped). Photo credits: Christine and mrchrishill.

Table 2. Comparison of DoF results on iPhone test set.

Method | Direct Regression | Aperture | MegaDepth[2018] + [Yang et al. 2016] | Ours
PSNR 25.84 26.88 26.67 28.235
SSIM 0.815 0.844 0.836 0.908
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N
=3

Ours iPhone No preference

Fig. 11. The results of our user study. Our method is compared to iPhone

portrait mode images (left), and the ray-tracing based approach [Yang et al.

2016] (right). Note that the both the iPhone and [Yang et al. 2016] are
computed with measured depth, whereas our method uses only a single
image. Error bars show 95% confidence intervals.

(Section 5.1) and use our lens blur and guided upsampling to render
shallow DoF, which we refer to as Aperture + Our Lens Blur. In the
second baseline, we combine our depth prediction network and the
DoF rendering method [Yang et al. 2016], which we refer to as Our
Depth + [Yang et al. 2016]. As shown in Fig. 10, Aperture + Our Lens
Blur performs poorly mainly due to inaccurate depth predictions,
suggesting that that depth supervision is still essential for high
quality results. With more accurate depth prediction, Our Depth +
[Yang et al. 2016] method works well, however, it still suffers from
artifacts at depth discontinuities on the foreground boundary. In
comparison, our lens blur method is trained on an artifact-free data
set and takes both depth and images as input, which allows it to
compensate subtle errors in depth prediction, and avoid common
artifacts of image-based shallow DoF approximations.

Recall that our lens blur module is performed in a learned feature
space. To investigate the effect of feature dimension on the final

Ours MegaDepth + Yang No preference

Table 3. Comparison of DoF results on iPhone test set. RealDepth and
SynDepth denotes the depth prediction modules which are trained on the
iPhone depth dataset and synthetic data set, respectively. GT, Pred, and
Corrupted indicate that the lens blur and guided upsampling modules are
trained with ground truth, predicted and corrupted depth, respectively.

Method | Baselinel | Baseline2 | Baseline3 | Ours
Depth Module | RealDepth | RealDepth | SynDepth | RealDepth
Training Input GT Pred Pred Corrupted

PSNR 28.038 28.237 22.380 28.235

results, we evaluate the performance of our method with respect to
different numbers of feature channels on the test set of the synthetic
shallow DoF dataset. As we see in Fig. 12, the quality of the rendered
results increases with respect to the channel number and begins to
saturate at 32 channels. For both efficiency and effectiveness, we
adopt 32 channels in our final models, which amounts to total of
12.5% of the kernel size represented, showing that we achieve a
large memory savings with almost no quality loss by operating in a
learned feature space.

To analyze the impact of learning lens blur and guided upsam-
pling from corrupted depth maps (Section 4.2), we compare our
method with three baselines. The depth prediction modules of the
first two baselines and our method are the same and they are trained
on the iPhone depth data (denoted as the RealDepth models). How-
ever, for training the lens blur and guided upsampling modules, the
first baseline uses the ground truth synthetic depth, and the sec-
ond baseline uses the depth generated by a depth prediction model
trained on the synthetic data, denoted as the SynDepth model. As
shown in Tab. 3, our method trained with corrupted depth achieves
similar performance to the second one trained with predicted depth,
which is superior to training with ground truth depth. This indicates
that it can be sub-optimal to train the lens blur and guided upsam-
pling modules on the ground truth depth because the networks
can be sensitive to the errors made by the depth prediction module.

ACM Trans. Graph., Vol. 37, No. 6, Article 245. Publication date: November 2018.
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Fig. 12. PSNR and SSIM of our method with respect to numbers of feature
channels on the test set of the synthetic shallow DoF dataset

iPhone Portrait

Input Ours

Fig. 13. Qualitative comparison of our method and iPhone portrait mode
(Cropped). In the first row, our method achieves comparable results against
iPhone. In the second row, iPhone fails to render shallow DoF effects.

The second baseline uses predicted depth to achieve more robust-
ness, but it requires training an additional SynDepth model, because
the RealDepth model completely fails on the synthetic depth data.
Furthermore, we evaluate a third baseline by replacing the depth
prediction module of the second baseline with the SynDepth model.
The comparison between the second and the third baselines sug-
gests that the SynDepth model trained on synthetic depth fails to
generalize to real scenes, leading to low quality of the final DoF
results. As a matter of fact, the MAE of the SynDepth on the iPhone
test set is 0.30, which is significantly worse than other competitors
listed in Tab. 1. This further confirms the necessity of training depth
prediction and lens blur modules on separate data sets.

5.4 User Study

To further evaluate the perceptual quality of our results, We con-
ducted two user studies. In the first user study, we compare our
results to the photos captured with iPhone portrait mode. Since
we cannot control the focal depth in iPhone photos, and we can-
not create defocus foreground images, we generate our results by
manually matching focus parameters. In the second user study, we
compare ours against MegaDepth[Li and Snavely 2018] + [Yang et al.

ACM Trans. Graph., Vol. 37, No. 6, Article 245. Publication date: November 2018.

Fig. 14. Refocusing allows us to change both the synthetic aperture size
(top) and the focal plane (bottom). Photo credits: DAVID BURILLO and Greg
Tsai.

Fig. 15. Failure cases. The leg of the bird, and part of the grass are incorrectly
blurred and focused. Photo credits: Eric Sonstroem and C Watts.

2016] (i.e. the state-of-the-art depth prediction method + RGB-D
lens blur rendering) on images downloaded from the internet, which
are captured by different cameras with various objects and scenes.

These two studies consisted of 86 and 58 participants respectively,
During the study, each participant was shown 20 image sets, each
consisting of the input all-in-focus image and the two shallow DoF
images. All images and results in the study are included in the
supplementary materials. In each image set, participants were asked
which result they preferred, or if there was no preference. Fig. 11
shows the results of this experiment, we can see that when compared
to the iPhone portrait mode, our method performs comparably,
despite the fact that our method uses predicted depth while iPhone
uses measured depth maps. In the second user study, our approach
significantly outperforms the MegaDepth [2018] + [Yang et al. 2016].
We note that the iPhone portrait mode only works in a very limited
depth range, which has been heavily optimized for (Fig. 13 shows
two examples), whereas in the second user study, the scenes are
more diverse, and both competitors only rely on a single image as
input. Fig. 14 shows results of changing the focus parameters on
the same image.



5.5 Limitations and Future Work

Our method has several limitations. First, single image depth estima-
tion is still a challenging problem, and errors in the depth computa-
tion are reflected in the rendered DoF results (Fig. 15). Therefore, one
of the future works will be improving our depth prediction module
by using larger training datasets and better model architectures.

Second, we note that most computation of our method has to be
performed at a low resolution due to current GPU memory limi-
tations. To address this problem, we proposed a recurrent guided
upsampling module which allows us to generate arbitrarily high
resolution outputs at test time. However, it may further improve
the performance if we can optimize the whole system directly on
high resolution DoF images.

Finally, we note that it leads to a decrease in quality if we jointly
train all the modules on our current datasets. The reasons are
twofold: i) Rendering shallow DoF images with existing methods
based on the collected depth leads to unpleasant artifacts, so any
network trained with the rendered results as ground truth simply
learns to recreate the artifacts in these existing approaches; ii) The
synthetic dataset is artifact-free. However, training on this dataset
in an end-to-end manner results in poor generalization ability to
real scenes. We believe that a large representative dataset with high
quality real-world shallow DoF images could be used to jointly train
all the modules in our system for improved results, if such a dataset
could be captured on a similar variety of dynamic scenes.

6 CONCLUSION

We have presented a neural network architecture, which combined
with carefully crafted datasets consisting of both real and synthetic
images, is capable of generating high quality shallow Depth-of-field
results from a single RGB image. With the introduction of the lens
blur module in low-res feature space and the guided upsampling
module that can be recurrently applied to increase resolution, our
model can generate high-resolution shallow DoF images with con-
trollable focal depth and aperture size at interactive rates.
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